

Расчет надежности и безотказности восстанавливаемых систем

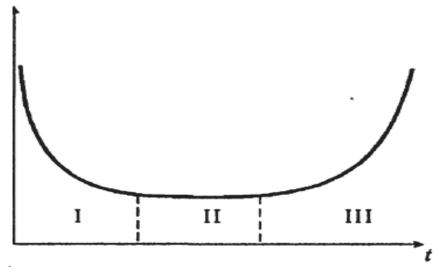
1. Теоретическое определение безотказности восстанавливаемых систем; 2. Величина интенсивности потока отказов.

Статистическая оценка интенсивности отказов

Среднее число объектовов

$$\lambda$$
 (t) = $\frac{\Delta n}{\Delta t \cdot n(t)}$

где Δn — число отказов на участке Δt . n(t) — число элементов, не отказав-ших к моменту t


Статистическая оценка интенсивности отказов

Среднее время до отказа

$$T = \frac{1}{\lambda (t)}$$

λ (t)

На участке I функция $\lambda(t)$ имеет повышенное и уменьшающиеся со временем значения (α <1). Это период ранних отказов для скрытых дефектов.

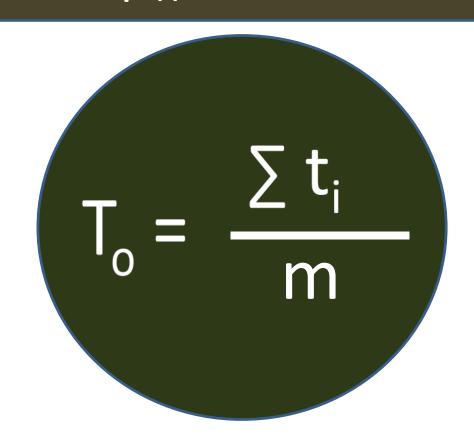
Участок II называют периодом нормальной работы. Для этого периода характерна Постоянная интенсивность отказов ($\alpha = 1$), $\lambda(t) = \text{const.}$).

Участок III – это период старения (α >1).

Так как участок II является основным, то в расчетах надежности) $\lambda(t) = \lambda = \text{const.}$

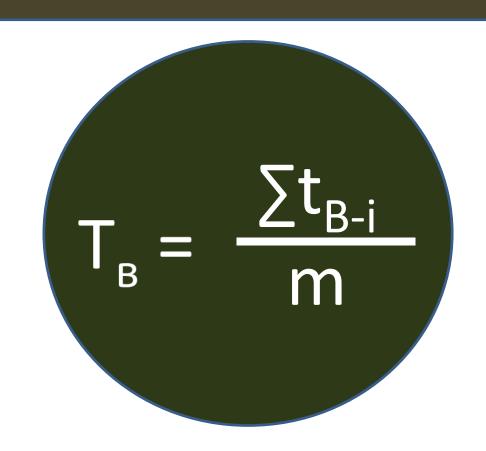
При экспоненциальном законе распределения

Функция надежности


$$P(t) = e^{-\lambda t}$$

Средняя наработка на отказ

Наработка восстанавливаемого элемента на один отказ в рассматриваемом интервале времени или определенной продолжительности эксплуатации:

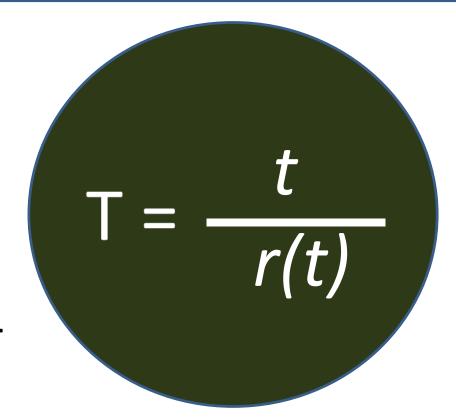

где t_i – наработка элемента до i-го отказа; m – число отказов в рассматриваемом интервале суммарной наработки.

Среднее время восстановления одного отказа в рассматриваемом интервале суммарной наработки или определенной продолжительности эксплуатации m:

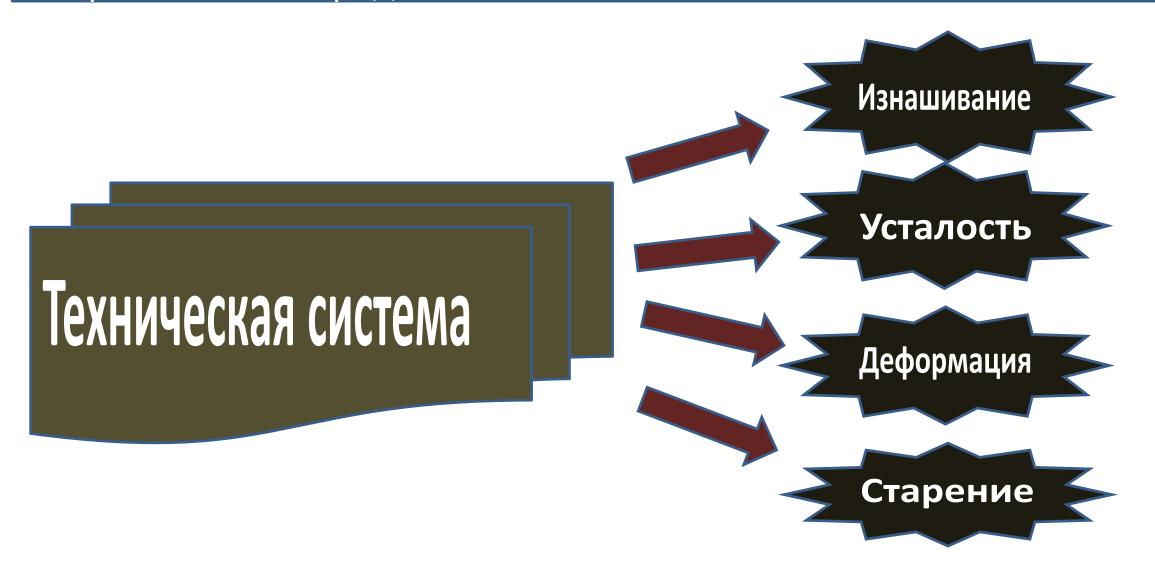
где t_{в-i} – время восстановления i-го отказа; m – число отказов в рассматриваемом интервале суммарной наработки.

Решение задачи на интенсивности отказов

Пример 1. На испытание было поставлено 1000 однотипных датчиков давления. За первые 3000 ч отказало 80 датчиков, а в течение интервала времени отказало еще 50 устройств. Требуется определить статистическую оценку интенсивности отказов датчиков в интервале времени 3000...4000 ч.


Решение. В рассматриваемом примере t=1000 ч; n(t)=920; $\Delta t=1000$ ч; $n(t+\Delta t)=870$. С использованием формул (1.5) и (1.6) находим

$$\overline{n}(\Delta t) = \frac{870 + 920}{2} = 895; \ \hat{\lambda}(t) = \frac{920 - 870}{895 \cdot 1000} = 5,6 \cdot 10^{-5} \ \text{u}^{-1}.$$



Статистическая оценка средней наработки на отказ Т вычисляется по формуле:

где r(t) – число отказов, фактически происшедших за суммарную наработку t.

Теоретическое определение безотказности восстанавливаемых систем

Теоретическое определение надежности восстанавливаемых систем

Наработка восстанавливаемого элемента

Факторы отказов системы

- дефектные элементы $\omega(t)_{\pi}$;
- отказы элементов в результате старения и ремонта $\omega(t)_{p}$
- базовые элементы (работоспособность системы в целом) ω (t) $_{6}$;
- параметры потока отказов (из-за нарушения режимов нагрузки и эксплуатации) ω (t) _э

$$\omega(t)c = \omega(t)д + \omega(t)p + \omega(t)б + \omega(t)э.$$

Статистическая оценка параметра потока отказов

Статистическая оценка параметра потока отказов определяется по формуле:

$$\omega(t) = \frac{R(t_2 - r(t_1))}{t_2 - t_1}$$